बारंबारता बंटन
चर $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
बारंबारता $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?
$2$
$1$
$4$
$6$
$25$ संख्याओं का मानक विचलन $40$ है। यदि प्रत्येक संख्या को $5$ बढ़ाया गया है, तब नया मानक विचलन होगा
$30$ आइटम (items) का परिणाम देखा गया, इनमें से $10$ आइटम में प्रत्येक के परिणाम $\frac{1}{2}- d$ दिया, $10$ आइटम में प्रत्येक ने परिणाम $\frac{1}{2}$ दिया तथा बाकि $10$ आइटम में प्रत्येक ने परिणाम $\frac{1}{2}+d$ दिया। यदि इन आँकड़ों का प्रसरण $\frac{4}{3}$ है, तो $| d |$ बराबर
किसी असतत् श्रेणी में (जबकि सभी मान समान नहीं हैं) माध्य से माध्य विचलन तथा मानक विचलन के मध्य सम्बन्ध है
यदि $50$ प्रेक्षणों $x _{1}, x _{2} \ldots, x _{50}$ का माध्य तथा मानक विचलन दोनों $16$ है, तो $\left(x_{1}-4\right)^{2},\left(x_{2}-4\right)^{2}, \ldots \cdots$ $\left( x _{50}-4\right)^{2}$ का माध्य है
यदि निम्न बारंबारता बंटन :का प्रसरण $50$ है, तो $x$ का मान है |
वर्ग | $10-20$ | $20-30$ | $30-40$ |
बारंबारता | $2$ | $x$ | $2$ |